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The Two-Dimensional One-Component Plasma 
at F = 2: Behavior of Correlation Functions 
in Strip Geometry 
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This paper considers a strip of two-dimensional one-component plasma of 
particles of charge q at a temperature T such that the coupling constant be 
F = q 2 / k e T  = 2. The strip is of finite width and infinite length and bears charge 
densities on either edge. Inside the strip and on one side, the dielectric constant 
is 1; on the other side of the strip, it may be either 1 or 0 (in the latter case, 
image forces play an important role). The free energy as well as the one-particle 
and two-particle distribution functions can be exactly computed. They obey a 
variety of sum rules reflecting the Coulombic behavior of the system. At large 
separations the truncated two-particle distribution function behaves with alge- 
braically decaying oscillations. The strip of finite width in fact is correlated 
along the strip much as a one-dimensional system is correlated. 

KEY WORDS: Coulomb systems; plasmas; surface properties; strip ge- 
ometry; correlations; sum rules, 

1. I N T R O D U C T I O N  

The recent  development  of exact results for the statistical mechanics  of a 

two-dimensional  one -componen t  p lasma (1- 8) has provided the oppor tuni ty  

to test a variety of general  theorems on systems with Cou lomb interactions.  

This has led in tu rn  to a variety of further developments  in the theory of 
Coulombic  systems, (8-12) part icularly their properties near  surfaces. It is of 

some interest then, to see how the properties of the two-dimensional  

one -componen t  p lasma change, when the system is conf ined to a strip of 

finite width, and  also when image forces are present. 

I Department of Mathematics, University of Melbourne, Parkville, Victoria, 3052, Australia. 
2 Laboratoire de Physique Th~orique et Hautes Energies, Universit~ de Paris-Sud, 91405, 

Orsay, France. (Laboratoire Associ~ du Centre National de la Recherche Scientifique). 

129 
0022-4715/83/0400-0129503.00/0 �9 1983 Plenum Publishing Corporation 



130 Forrester, Jancovici, and Smith 

A two-dimensional one-component plasma is described by a dimen- 
sionless coupling constant F = q2/k~T, where q is the charge of a particle, 
k 8 Boltzmann's constant, and T the temperature. 

One interesting property of Coulomb systems is the asymptotic behav- 
ior of the charge-charge correlation function. For the one-component 
plasma this is just the truncated two-particle distribution function 

P ( ~ ) ( r l ,  r 2 )  = P(2)(rl , r2) -- 0(l~(r,)P(1)(ra) (1. l) 

In the bulk fluid phase, the correlations are expected to exhibit an 
exponential or faster decay. Such a decay has been rigorously proved for a 
two-dimensional one-component plasma at the special value of the cou- 
pling constant r = 2, (l) and at high temperature and low densities in all 
dimensions.(13) 

Near a wall, longer-range correlations, which decay only algebraically, 
may occur. Consider a system confined to a half-space x > 0; the region 
x < 0 is filled with a continuum of dielectric constant %, the dielectric 
constant of the background in x > 0 is chosen as % -- 1. Let (x, y) be the 
coordinates of a particle [x measuring the distance from the wall and y 
being the coordinate(s) normal to x]. When % = %  = 1, for a two- 
dimensional one-component plasma at r = 2 (4,7) as well as in the weak- 
coupling limit ( F ~ 0 )  in v dimensions (p = 2, 3), (14'7) p(2)(xl,x2 , T  " Yl-.I;2) 

A (Xl, x2) lY~ - Y21 - ~, for large y and xl ,  x2 finite. A heuristic argument 
has been given in Ref. 8 to show that this is true in general and that 

foo ~176 fo ~176 k~Tew (p = 2 , 3 ) ( 1 . 2 )  axl dxzA(xl 'xa) = 2 Q , -  1)2~r2q 2 

In special case % = 0, (4) 0(r 2) decays as an oscillating exponential (8) for the 
two-dimensional one-component plasma at F = 2. 

The present paper deals with a two-dimensional one-component 
plasma at F = 2 confined in a strip of finite width. Let % again be the 
dielectric constant of the background in the strip, and let q and e 2 be the 
dielectric constants of the continua on either side of the strip. The simplest 
soluble case in which all dielectric constants are equal, q - - c  2 - -%,  has 
already been investigated in Ref. 5. In the present paper, we also consider a 
case with image forces: a soluble problem is obtained if we make the 
(somewhat academic) choice q = 0, s = % = 1. Then there are images of 
the same sign and magnitude as the particles. In both cases it will be shown 
here that the correlations along the strip have an asymptotic behavior with 
algebraically decaying oscillations; this behavior resembles, as it should, 
that of a one-dimensional system. 

Exact results for the system in a strip, in the case with image forces 
(q = 0, e 2 = % = 1) are developed in Section 2. The asymptotic expansions 
of the correlations in a strip, for both cases, without (e I = e 2 = % = 1) and 
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with image forces (q = 0, e 2 = e b = l) are studied in Section 3. The results 
are discussed in Section 4. 

2. EXACT RESULTS WITH IMAGE FORCES 

Consider a two-dimensional system composed of an annulus of inner 
radius R -  L and outer radius R + L. The region 0 < r < R + L has 
dielectric constant 1 and the region r > g + L has dielectric constant 0. 
The outer (inner) edge of the annulus bears linear charge density - o +  q ( -  
o q) and the annular region bears a background charge density - ~q and 
contains N particles of charge q with exact charge neutrality holding so that 

N = 2~r(R - L)o_ +4~rRL~ + 2qr(R + L)o+ (2.1) 

The pair potential between two charges ql, qz at r 1 , r 2 (in the annulus) is the 
solution to the two-dimensional Poisson equation with Neumann boundary 
condition at r = R + L, namely,- 

- (1 /2)q lq21og{(r  1 -r2)2[ 1 - 2 r , .  r 2 / ( R  q- L )2q  - r~lr~2/(R -1- L ) 4 ] )  

Here r is measured in some arbitrary length unit taken as 1 for conve- 
nience. The net potential energy W of a configuration r 1 . . . . .  r N of the 
particles is found to be given by 

- m ( r  1 . . . .  , r N )  

= __F2 - log(R + L) 2 + M21og R +- L 

3 21 EBN,  _ EB E +NN* - ~Y,2 B + 

+ ~] Mlog  + log 1 
k= ~ ( 8  + L)  2 (8  + L) 2 ( 8  + L) 2 

+ ~ ~ log 1 
k=l j=k+ l  (R + L) 2 

2(rj rk) + 

( R + r )  2 ( 8 + L )  4 

(2.2) 

Here N * = ~ r ~ / ( R + L )  2, E+ =2Tr (R+L)o+_ ,  Y'B=4v~IRL, M = N * -  
Z B - Z _ ,  and F =  q2/kBT. Terms corresponding to the interaction of 
particles with their own images and with the images of other particles may 
be seen clearly. Notice that, with q = 0, the problem V2~ = -2~rp(r) for q, 
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is a Neumann problem and so only has a solution (unique up to an additive 
constant) if (2.1) holds. Exact results for this system are now developed 
with I" = 2, using the methods of Ref. 4. 

First, let rj = (R + L)(zjcosOj,zjsinOj) = w with R - L 
<<, rj <~ R + L and 0 < Oj < 2~r. Then define 

l exp(iOj), 1 <~ j < N (2.3) aj = zjexp(iOj), a2u+l-J = Zj 

and the 2N • 2N matrix 

D2N (k, j)  = a f -  1, 1 < k, j < 2N (2.4) 

The determinant of the matrix is a 2N X 2N van der Monde determinant 
and may be rearranged as 

N 

DetDzu = I I  [z;(2N-l)exp[iOk( 2 N -  1 ) ] ( 1 -  z2)] 
k = l  

N - - 1  N 

• II  I-I (zj - zk) (1 - 2,k.  ,j + I 4) (2.5) 
k = l  j = k + l  

with zj = r j / (R  + L). This gives a representation of the integrand in the 
canonical partition function and distribution functions which is particularly 
useful: the integrals on 0j, when the determinant is given its permutation 
expansion, are all of the form f~'exp(iJOt)dOz, J being an integer. The 
remaining integrals may be performed, using incomplete gamma functions, 
and the thermodynamic limit taken, using the uniform asymptotic expan- 
sion of these functions. (6'4) It is useful to introduce the parameters a• 
= o• (2~r/~) 1/2, x 2 = 27r,/(this definition of g 2 differs by a factor 2 of the 
one used in some other papers) and Y = (1/2)(a+ + a_  +2~L). In the limit 
R ~ ~ ,  an infinite straight strip of width 2L is obtained. 

The simplest exact (finite N) result is for the one-particle distribution 
function which gives 

0 ( l ) ( r a )  - 
Z 1 - -  Z 1 N , ( M + I )  1 z~Mexp( -N-z2 N 21-2  2 ( 2 N - / )  

+ L) 2 , ) 2  

(2.6a) 

where 

F ( I , M , N ) =  y ( M  + I , N * ) -  y M + I,N* ~--~--~ 
J 

--N*-(2N+I-21)IT(M + 2N + 1 - l ,N*) 

(2.6b) 
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The passage to the thermodynamic limit allows sums like that in (2.6a) to 
be written as sum approximations to Riemann integrals with the approxi- 
mation becoming exact in the thermodynamic limit. 

The free energy per unit length of strip is 

f(o_,o+,n;L) 

= l i m  - k ~  T R ~  ~ 1OgZu(I" = 2) 

(;0 _ - k B T~ log{ ef t(a+ - t + 2KL) -- erf(a+ - t) - exp(4ta + ) 
2~r 

•  +t + 2xL)-erf(a+ +t)]}dt 

2rl 8 y3 
- Y l o g ~ -  + -~ - ( a +  + a _ )  

• (a+ a_  + 4 x L Y )  - g (xL) 3 (2.7) 

where erf(t) is the error function 

2 erf(t) = ~ -  f0texp( - u2)du (2.8) 

The density at a distance x from the c~ = 0 wall is found to be 

2"  ,"2Y 
2~/ e x p [ - ( ~ x  + a+ ) ]L2/ texp(- t2)s inhZ~xt  or = r 

X { e x p ( - 2 a +  t ) [er f (a+ - t + 2~L) - ef t(a+ - t ) ]  

- exp(2a+ t ) [er f (a+ + t + 2,,L) - ef t(a+ + t ) ] )  ' (2.9) 

This density has no unexpected feature. In the limit L ~ ~ ,  with x fixed, 
p(1)(x) becomes the density against a wall with % = 0 ;  (4~ in the limit 
L--> co, with 2L - x fixed, p(l~ (x) becomes the density against a wall with 
E w ---- 1 .  (4 ,6 ,7)  For L finite these two limiting density profiles combine, with 
some distortion. 

The two-particle distribution function is a little more difficult to 
evaluate, as with the % = 0 case in disk geometry. (4~ If Eq. (2.9) be taken as 
the definition of a function of complex x, then the two-particle distribution 
function may be expressed in terms of it, just as for the disk case. (4~ 
Consider the probability density for two particles, one at (x l ,0)  and the 
other at (x 2, y) (x i measuring the distance from the el = 0 wall and the 
second coordinate being normal to x,.). In the thermodynamic limit, the 
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truncated distribution function reduces to 

p(~)(x, ,x2; y ) =  - e x p ( -  ~r~/[ (x 1 - x2) 2 + y2]} 

•  (xl + + 

- exp(-2K2x]x2 - 4a+ xx2) 

X ]P(1)E l ( X l -  X 2 q" iy)]l 2} (2.1o) 

3. A S Y M P T O T I C  NATURE OF THE CORRELATIONS 

3.1. Without Image Forces 

We consider the same system as in Section 2, except that the dielectric 
constant is 1 everywhere. The one-body and two-body distribution func- 
tions of that system have been computed in Ref. 5. There too, the two-body 
truncated distribution function O~2)(x],x2; y) was expressed in terms of the 
one-body distribution function O(0 (x), where the variable x had to be given 
the complex value (x I + x 2 "{- iy)/2. The function O(0[(Xl + x 2 "[- iy)/2], as 
a function of y, is the Fourier transform of some function of t, the support 
of which is the finite interval (0, Y), and the asymptotic behavior as 
lYl ~ oe is easily obtained by the usual procedure of integration by parts. 
The resulting asymptotic behavior of r P(2), as ]Yl ~ oo, for fixed values of x I 
and x2, is 

O~)(XI,X2 ; y )  

4~/2 
q7"/r 2~F 2 

_ _  I e x p [ - ( 2 Y - o % -  x x 0 2 - ( 2 Y - c ~ + - x x 2 )  2] 

[ [-eff(-~ --- ~ 5 --- er-~-a--_ ) ] 2 

+ 

- 2  

e x p [ - ( a  + + tcx,) 2 - (a+ + xx2) 2] 

[erf(2 Y - ~_ ) - eft(a+ )12 

e x p [ - 2 Y  2 -  (a+ - Y +  xx,) 2 -  (a+ - Y +  Kx2) 2] 

[ erf(2 Y - a + ) - erf(a _ ) 1 [ erf(2 Y - a _ ) - erf(a + ) ]  

Note the appearance of an oscillating term cos 2 Yry. 

(3.1) 
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It is of interest to consider the quantity 

r2L r2L T 
S ( y ) = J 0  dx1J 0 dx20(2)(Xl,X2; y)  (3.2)  

which is a linear density-linear density correlation function along the strip. 
From (3.1), one finds its asymptotic behavior 

_-l_ I1 e x p ( - 2  Y2)[erf(Y - c~+) + e f t ( Y -  c~_)l 2 

s (y)  27r~2 l [erf(2 Y -  ~+)  - erf(c~_)] [erf(2 Y -  c ~ _ ) -  erf(ct+ )] 

1 xcos2  t (3.3) 

3.2. With Image Forces 

We come back to the case e 1 = 0, e 2 = e b = 1. Again, O(1)[(Xl ____-. X 2 -t- 
iy)/2], as a function of y, is the Fourier transform of a function of t which 
has a finite support, ( - 2  Y, 2 Y) now. The resulting asymptotic behavior of 
O(~), as ]Yl ~ ce, for fixed values of x],x 2, is found to be 

T o~2~(x,, x2, y) 

~ 4~/2 exp[ - (~Xl + c~+ )2 - (xx 2 + c~+ )2 - 4 y 2 ]  
7/" 

I 4So l c ~  • F(2Y------) sinh2KYxlsinh2~Yx2 ~y 

X 

1 
dy 2 

- 4exp( - 4 y2) 
--F-~2~)) sinh4~Yx'sinh4~Yx2 + 4S~ 

• F(2Y~----) + F2(2y-------~ sinh2~Yx]sinh2~Yx2 

F(~Y) (x~cosh 2XYXlSinh 2K Yx 2 
\--n 

+ x2sinh 2xYxlcosh 2KYx2) 1/I -4- O 
YJ 

(3.4) 
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where 

and 

F(t) = exp(-2a+ t)[erf(a+ - t + 2xL) - eft(a+ - t)] 

- exp(2a+ t)[erf(a+ + t + 2KL) - eft(a+ t)] 

( 4 exp[ +2~L)2]) S 0=2~" ~ - { e x p ( - a z + ) -  - ( a +  

+ 4a+ [erf(a+ ) - eft(a+ + 2xL)])-~ 

The resulting asymptotic behavior of s(y) is 

s(y)-- x p ( - 2 Y  ) F----~ S~ xy + - -  

Sor(Y) 
• - 1  + e x p ( - 2 Y  2) F(2Y) 

F'(2 r )  
X 4Y + F(2Y----~ 

where 
G(Y) = exp(-2a+ Y) 

2G(Y)]sin2xYy} + O(y--3)) 

(3.5) 

(3.6) 

(3.7) 

• ( I - a +  + Y] [erf(2~L + a+ - Y) - erf(a+ - Y)] 

+ exp(2a+ Y) ( ( - a+  - Y)[erf(2KL + ~+ + Y) - eft(a+ + Y)] 

1 [ e x p [ - ( a +  + y)2] +• 

- e x p [ - ( 2 ~ L  + a+ + y)2] ] )  (3.8) 

4. D I S C U S S I O N  

Consider a strip of width 2L. Let there be charge densities +_ aq on the 
edges of the strip (+ oq on the q edge), so that there is an electric field 
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E = 27roq in the strip. Then  it is to be expected (5) that 

Of [ s 2rlL2 + 2Lol (4.1) 
3E  - q 

where f(E, B, ~ ; L )  is the free energy of the system per unit length of strip. 
In Ref. 5, this equat ion was shown to hold for the case e I = e 2 = e b. Using 
(2.7) and (2.9), we can also show it holds for the case q = 0, c 2 = % -- 1. 

A fundamenta l  proper ty  of Coulomb systems is the perfect-screening 
sum rule 

2L oo T 
s dx2;~_dyo(2)(xl,x2; v)--- -0 ( l ) (Xl )  (4.2) 

This sum rule can be checked here for both  cases q = s = Eb and q = 0, 
e 2 = % = 1. In the second case, integration of 0(~) is not  at all easy unless 
the representat ion [easily shown to be equivalent to Eq. (2.10)] 

O~2)(x1,x2 ; y ) =  _ 4~/__~2 exp[ _ (~xl + ~+ )2 _ (Kx2 + ~+ )2] 
7/" 

d-('2Y dl, ~2Y e x p ( -  t 2 - t 2) 
X dt2 -21" a-2Y r(tl)F(t2) 

X sinh[ x(t, + t z )x l ] s inh[  x(t t + t2)x2] 

X {exp[&y(t,-t2) ] +exp[ixy(t 1 + t2)]} (4.3) 

is used. The y integration in (4.2) can be done first giving delta functions 
which allow the t 2 integration to be performed,  then the x ;  integration. It 
should be noted that the perfect-screening sum rule (4.2) has been rigor- 
ously proved by Gruber ,  Lebowitz, and Martin,  (9) using among other  
properties the assumption that r p(2)(Xl, X2, y )  decays faster than, or at least 
as fast as (l~ [yl -~, where v is the space dimensionality. This condit ion is 
not  satisfied by (3.4), and thus it is not  a necessary one. 

A further sum rule for this system is 

0P(I)(X1) -4"lrs ~) (4 .4)  ~c 
which was derived in general, for  the half-space problem, by Blum et al. (~) 
This sum rule can be shown to hold here for the strip problem as well, by 
using the same techniques as for  proving (4.2), notwithstanding the weak 
decay (3.4). 

It is now of interest to return to consider the functions s(y) discussed 
in Section 3. It is possible to retrieve a one-dimensional  system by taking 
the limit L --> 0, ~ --> oe, for fixed values of a + and o _, in such a way that 



138 Forrester, Jancovici, and Smith 

2L~1 remains finite. Then 

Ix = 2L~1 + o+ + o_ - xY (4.5) 
~r 

which is the number of particles per unit length, has a finite limit. In this 
limit, one finds from (3.3) 

s ~ ( y ) -  - - -  

and from (3.7) 

s0(y)__/z2I COS4bty2'a'#y 

1 (1 - cos2rrtxy ) 
2~r~y 2 

(4.6) 

1 + (~r/2)sin 2~r/,y 4rr 2# ~Y 2 + O (1~7)1 (4.7) 

(the subscript 1 or 0 refers here to the value of q). The right-hand side of 
(4.6) is exactly the correlation function obtained for the one-dimensional 
one-component log-potential system at F = 2 by Mehta and Dyson. (15) 
That is, the appearance of the cosine term in Eq. (3.3) seems due to the 
quasi-one-dimensional nature of the strip system. The result (4.7) is that 
obtained for the one-dimensional system, (15) for F = 4. The reason this 
temperature should occur is that the images double the effective coupling 
between charges when the charged particles are confined to a line against 
the e 1 = 0 wall. Of course this also means that the strip against an e 1 = 0 
wall is also showing quasi-one-dimensional behavior. The images mean that 
the relevant one-dimensional behavior is that of a system at lower tempera- 
ture (s = 4) than was relevant to the strip without images. These ideas 
suggest that for the two-dimensional one-component plasma in a strip with 
coupling constant F with dielectric constant % in the strip and one side and 
with dielectric constant e I on the other side, the integrated correlation 
function s(y) will decay at large y in a fashion similar to the decay of the 
one-dimensional log-potential correlation function. However, the one- 
dimensional system must be considered at coupling constant F[1 + (% - q)  
/(% + q)]. Incidentally, the case q -> oo is not covered by this argument, 
because the Coulomb interaction is then replaced by a monopole- 
dipole interaction, which may lead to completely different behaviors. The 
conjecture is interesting at r = 1, where it predicts that, as the strip system 
becomes infinitely narrow, the functions s(y) should become (15) 

sl(Y)~tx2( l l + c ~  ) q7.2~ 2~ 2 gr4~ 4 + " ' "  (4.8) 

and 

1 (1 -- cos 2~r/,y) (4.9) So(y ) = 2~r~2 
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Thus we find oscillations with a wavelength/~ - 1, which are reminiscent 
of a one-dimensional crystal. However, here there is no true long-range 
order, since the oscillations ultimately decay as ]y] becomes large. The strip 
systems which are considered here should not be confused with another 
system which has been studied by Choquard. (16) Choquard uses different 
boundary conditions: he considers a long thin rectangular strip with 
periodic boundary conditions across the strip (instead of hard walls), and he 
does find strict long-range crystalline order along the strip. His result can 
be easily understood, because each particle together with its periodic 
replicas approximately forms a charged rod, and the effective interaction 
between two such rods is the one-dimensional Coulomb (linear) potential. 
Thus, his system behaves like a one-dimensional one-component Coulomb 
potential system, which is indeed known to be crystalline at any tempera- 
ture.(17) This kind of argument suggests that a three-dimensional Coulomb 
system restricted to a long thin prism with periodic boundary conditions 
across the prism might exhibit strict long-range crystalline order, but we 
have no hint for the behavior of this system for hard-wall boundary 
conditions. 

The general argument which was given in Ref. 8 for deriving the 
asymptotic behavior of the correlations parallel to the wall in the half-space 
problem can be easily adapted to the strip problem; actually things are 
even simpler for a strip, because there is no bulk contribution to be 
subtracted. This argument is based on the linear-response relation, and the 
assumption that an external charge density periodic along the strip with a 
macroscopic wave number is perfectly screened. In this way, it can be 
shown that the Fourier transform 

g(k) = f'-~oei~ys(Y)dy (4.10) 

behaves, for small k values, as 

+  2)k r 
- + Ik[ + ' "  (4 .11)  

2rrq 2 

This Iki singularity in ~(k) gives in s(y)  a contribution - ( e  1 + e2) 
kBT/2rrZq~v 2, which is indeed present in the asymptotic forms (3.3), (3.7), 
(4.6), (4.7), (4.8), (4.9). However, the explicit calculations made here show 
that ~(k) may have other singularities on the real-k axis. The oscillations 
found here with a wave number 2~r/~ correspond to singularities of ~(k) at 
k = _+2vr/,, which are the mathematical manifestation of a tendency to 
one-dimensional crystalline ordering. These singularities also contribute to 
the asymptotic form of s(y). Unfortunately, it does not seem easy to 
predict the exact nature of these singularities at k 4 = 0, and we cannot know 
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a priori which kind of decay they will give for the cos (2~r/~y) term in s(y). 
It turns out that the dominant term in the asymptotic form of s(y)  is given 
by the k = 0 singularity in (4.8), by the k = + 2~r~ singularities in (3.7) or 
(4.7), and by the three of them in (3.3), (4.6), or (4.9). 

For a three-dimensional fluid Coulomb system confined to a slab, 
there is no reason to expect singularities in ~(k) for nonzero real values of k. 
The only singularity presumably will be at k = 0, of the form 

(q + ~2)kB r 
~(k)- -  - ~ + Ikl (4.12) 

4~rq 2 

(/~ is now the surface density on the slab), and the asymptotic behavior of 
s(y) should again be simple, and of the form 

(q + c2)k~r 
s(y)~ 8~2q21y13 (4.13) 
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